线性代数是19世纪后期发展起来的数学分支,是一门基础理论课程。 本课程主要讨论有限维线性空间的线性理论与方法,具有较强的逻辑性、抽象性与广泛的实用性,尤其在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值等已成为技术人员经常遇到的课题
3
(0评价)
线性代数是19世纪后期发展起来的数学分支,是一门基础理论课程。 本课程主要讨论有限维线性空间的线性理论与方法,具有较强的逻辑性、抽象性与广泛的实用性,尤其在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值等已成为技术人员经常遇到的课题。
@ Katherine蓝羽 : 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
回复(0)
@ Katherine蓝羽 : 比如:①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位 ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的 ④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具.
回复(1)